
1.install Microsoft.AspNetCore.Authentication.JwtBearer

Validate

services.AddAuthentication(JwtBearerDefaults.AuthenticationScheme).AddJwtBearer(JwtBearer
Defaults.AuthenticationScheme, config => {

 config.TokenValidationParameters = new TokenValidationParameters
 {

 ValidateIssuer = true,
 ValidIssuer = configuration["Security:Tokens:Issuer"],
 ValidateAudience = true,
 ValidAudience = configuration["Security:Tokens:Audience"],
 ValidateIssuerSigningKey = true,
 IssuerSigningKey = new
SymmetricSecurityKey(Encoding.UTF8.GetBytes(configuration["Security:Tokens:Key"])),

 };

 });

Issue

public string IssueCandidateJwtToken(Candidate candidate)
 {
 var claims = new[]
 {
 new Claim(ClaimTypes.Name,candidate.FullName),
 new Claim(ClaimTypes.Email,candidate.Email),
 new Claim("Candidate","true")

 };

 var key = new

SymmetricSecurityKey(Encoding.UTF8.GetBytes(configuration["Security:Tokens:Key"]));
 var creds = new SigningCredentials(key, SecurityAlgorithms.HmacSha256);
 var token = new
JwtSecurityToken(configuration["Security:Tokens:Issuer"],configuration["Security:Tokens:A
udience"],
 claims,
 expires: DateTime.Now.AddMinutes(30),
 signingCredentials: creds);
 var tokenText = new JwtSecurityTokenHandler().WriteToken(token);
 return tokenText;
 }

Cookies or Headers for Authentication?
First, some background. Authentication tokens (such as JWTs) are typically
transmitted in the HTTP Authorization header, like this:

GET /foo
Authorization: Bearer [token]

Tokens can also be transmitted via browser cookies. Which transport method you
choose (headers or cookies) depends on your application and use case. For
mobile applications, headers are the way to go.

For web applications, we recommend using HttpOnly cookies instead of HTML5
storage/headers, for better security against XSS attacks. It’s important to note that
using cookies means that you need to protect your forms against CSRF attacks
(by using ASP.NET Core’s AntiForgery features, for example).

Validating Tokens in ASP.NET Core
First, you’ll need to create a SecurityKey from your secret key. For this example,
I’m creating a symmetrical key to sign and validate JWTs with HMAC-SHA256.
You can do this in your Startup.cs file:

// secretKey contains a secret passphrase only your server knows
var secretKey = "mysupersecret_secretkey!123";
var signingKey = new SymmetricSecurityKey(Encoding.ASCII.GetBytes(secretKey));

Validating JWTs in Headers

In your Startup class, you can use the UseJwtBearerAuthentication method in
the Microsoft.AspNetCore.Authentication.JwtBearer package to require a
valid JWT for your protected MVC or Web API routes:

var tokenValidationParameters = new TokenValidationParameters
{
 // The signing key must match!
 ValidateIssuerSigningKey = true,
 IssuerSigningKey = signingKey,

 // Validate the JWT Issuer (iss) claim
 ValidateIssuer = true,
 ValidIssuer = "ExampleIssuer",

 // Validate the JWT Audience (aud) claim

https://stormpath.com/blog/where-to-store-your-jwts-cookies-vs-html5-web-storage

 ValidateAudience = true,
 ValidAudience = "ExampleAudience",

 // Validate the token expiry
 ValidateLifetime = true,

 // If you want to allow a certain amount of clock drift, set that here:
 ClockSkew = TimeSpan.Zero
};

app.UseJwtBearerAuthentication(new JwtBearerOptions
{
 AutomaticAuthenticate = true,
 AutomaticChallenge = true,
 TokenValidationParameters = tokenValidationParameters
});

With this middleware added to your application pipeline, any routes protected
with [Authorize] will require a JWT that passes the following validation
requirements:

 The signature matches your server’s secret key

 The expiration date (exp claim) has not passed

 The not-before date (nbf claim) has passed

 The Issuer (iss) claim matches “ExampleIssuer”

 The Audience (aud) claim matches “ExampleAudience”
If there is not a valid JWT in the Authorization header, or it fails these validation
steps, the request will be rejected. If you’re not familiar with the JWT spec, the
Issuer and Audience claims are optional. They are being used here to identify the
application (issuer) and the client (audience).

How to Secure JWT
There are a lot of libraries out there that will help you create and verify JWT, but
when using JWT’s there still some things that you can do to limit your security risk.

 Always verify the signature before you trust any information in the JWT. This
should be a given, but we have recently seen security vulnerabilities in other
company’s JWT frameworks. One gotcha that we have seen recently is around the
JWT spec that allows you to set signature algorithm to ‘none’. This should be
ignored if you expect the JWT to be signed. Put another way, if you are passing a
secret signing key to the method that verifies the signature and the signature
algorithm is set to ‘none’, it should fail verification.

 Secure the secret signing key used for calculating and verifying the signature. The
secret signing key should only be accessible by the issuer and the consumer; it
should not be accessible outside of these two parties.

https://tools.ietf.org/html/rfc7519

 Do not contain any sensitive data in a JWT. These tokens are usually signed to
protect against manipulation (not encrypted) so the data in the claims can be
easily decoded and read. For example, you wouldn’t want to include a user’s
address in a JWT; you would want to store a link to the user’s record or another
identifier that is opaque and have your application look up the information. If you
do need to store sensitive information in a JWT, check out JSON Web Encryption
(JWE).

 If you worried about replay attacks, include a nonce (jti claim), expiration time
(exp claim), and creation time (iat claim) in the claims. These are well defined in
the JWT Spec(https://tools.ietf.org/html/draft-ietf-oauth-json-web-token-25)

https://en.wikipedia.org/wiki/Replay_attack
https://tools.ietf.org/html/draft-ietf-oauth-json-web-token-25

	Cookies or Headers for Authentication?
	Validating Tokens in ASP.NET Core
	Validating JWTs in Headers
	How to Secure JWT

